Flexible semiparametric mixed models

نویسندگان

  • Gerhard Tutz
  • Florian Reithinger
چکیده

In linear mixed models the influence of covariates is restricted to a strictly parametric form. With the rise of semiand nonparametric regression also the mixed model has been expanded to allow for additive predictors. The common approach uses the representation of additive models as mixed models. An alternative approach that is proposed in the present paper is likelihood based boosting. Boosting originates in the machine learning community where it has been proposed as a technique to improve classification procedures by combining estimates with reweighted observations. Likelihood based boosting is a general method which may be seen as an extension of L2 boost. In additive mixed models the advantage of boosting techniques in the form of componentwise boosting is that it is suitable for high dimensional settings where many influence variables are present. It allows to fit additive models for many covariates with implicit selection of relevant variables and automatic selection of smoothing parameters. Moreover, boosting techniques may be used to incorporate the subject-specific variation of smooth influence functions by specifying ”random slopes” on smooth effects. This results in flexible semiparametric mixed models which are appropriate in cases where a simple random intercept is unable to capture the variation of effects across subjects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Semiparametric Analysis Using Hierarchical Predictive Models

The Hierarchical Predictive Model (HPM) is a semiparametric mixed model where the fixed effects are fit with a user-specified non-parametric component. This approach extends current spline-based semiparametric mixed model formulations, allowing for more flexible nonparametric estimation. Greater adaptability simplifies model specification making it easier to analyze data sets with large numbers...

متن کامل

Additive mixed models with Dirichlet process mixture and P-spline priors

Longitudinal data often require a combination of flexible trends and individual-specific random effects. In this paper, we propose a fully Bayesian approach based on Markov chain Monte Carlo simulation techniques that allows for the semiparametric specification of both the trend function and the random effects distribution. Bayesian penalized splines are considered for the former, while a Diric...

متن کامل

LASSO-type estimators for semiparametric nonlinear mixed-effects models estimation

Parametric nonlinear mixed effects models (NLMEs) are now widely used in biometrical studies, especially in pharmacokinetics research and HIV dynamics models, due to, among other aspects, the computational advances achieved during the last years. However, this kind of models may not be flexible enough for complex longitudinal data analysis. Semiparametric NLMEs (SNMMs) have been proposed by Ke ...

متن کامل

Bayesian semiparametric multi-state models

Multi-state models provide a unified framework for the description of the evolution of discrete phenomena in continuous time. One particular example are Markov processes which can be characterised by a set of time-constant transition intensities between the states. In this paper, we will extend such parametric approaches to semiparametric models with flexible transition intensities based on Bay...

متن کامل

Maximum penalized likelihood estimation in semiparametric capture-recapture models

We consider a semiparametric modeling approach for capture-recapture-recovery data where the temporal and/or individual variation of model parameters – usually the demographic parameters – is explained via covariates. Typically, in such analyses a fixed (or mixed) effects parametric model is specified for the relationship between the model parameters and the covariates of interest. In this pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005